Neural Spike-Train Analyses of the Speech-Based Envelope Power Spectrum Model
نویسندگان
چکیده
Diagnosing and treating hearing impairment is challenging because people with similar degrees of sensorineural hearing loss (SNHL) often have different speech-recognition abilities. The speech-based envelope power spectrum model (sEPSM) has demonstrated that the signal-to-noise ratio (SNRENV) from a modulation filter bank provides a robust speech-intelligibility measure across a wider range of degraded conditions than many long-standing models. In the sEPSM, noise (N) is assumed to: (a) reduce SþN envelope power by filling in dips within clean speech (S) and (b) introduce an envelope noise floor from intrinsic fluctuations in the noise itself. While the promise of SNRENV has been demonstrated for normal-hearing listeners, it has not been thoroughly extended to hearing-impaired listeners because of limited physiological knowledge of how SNHL affects speech-in-noise envelope coding relative to noise alone. Here, envelope coding to speech-in-noise stimuli was quantified from auditory-nerve model spike trains using shuffled correlograms, which were analyzed in the modulationfrequency domain to compute modulation-band estimates of neural SNRENV. Preliminary spike-train analyses show strong similarities to the sEPSM, demonstrating feasibility of neural SNRENV computations. Results suggest that individual differences can occur based on differential degrees of outerand inner-hair-cell dysfunction in listeners currently diagnosed into the single audiological SNHL category. The predicted acoustic-SNR dependence in individual differences suggests that the SNRdependent rate of susceptibility could be an important metric in diagnosing individual differences. Future measurements of the neural SNRENV in animal studies with various forms of SNHL will provide valuable insight for understanding individual differences in speech-in-noise intelligibility.
منابع مشابه
Biologically-Inspired Spike-Based Automatic Speech Recognition of Isolated Digits Over a Reproducing Kernel Hilbert Space
This paper presents a novel real-time dynamic framework for quantifying time-series structure in spoken words using spikes. Audio signals are converted into multi-channel spike trains using a biologically-inspired leaky integrate-and-fire (LIF) spike generator. These spike trains are mapped into a function space of infinite dimension, i.e., a Reproducing Kernel Hilbert Space (RKHS) using point-...
متن کاملSelf-consistent determination of the spike-train power spectrum in a neural network with sparse connectivity
A major source of random variability in cortical networks is the quasi-random arrival of presynaptic action potentials from many other cells. In network studies as well as in the study of the response properties of single cells embedded in a network, synaptic background input is often approximated by Poissonian spike trains. However, the output statistics of the cells is in most cases far from ...
متن کاملSpike-v: an Adaptive Mechanism for Speech-rate Independent Timing
A neuronal model intended to target highly sonorant periods of a speech stream is presented. The model—“Spike-V”—uses habituation and Hebbian learning in opposition to each other to dynamically adjust its behavior. Acting in realtime, driven by only the signal, Spike-V produces a spike-train in which each spike corresponds to roughly the center of a period of high sonority (i.e. a vowel) in the...
متن کاملAn Energy-Efficient Spike Encoding Circuit for Speech Edge Detection
In speech processing applications, the instantaneous bandwidth of speech can be used to adaptively control the performance of an audio sensor’s analog front end. Extracting the instantaneous bandwidth of speech depends on the detection of speech edges in the time-frequency plane. In this paper, we propose a spike encoding circuit for real-time and low-power speech edge detection. The circuit ca...
متن کاملOn the Spike Train Variability Characterized by Variance-to-Mean Power Relationship
We propose a statistical method for modeling the non-Poisson variability of spike trains observed in a wide range of brain regions. Central to our approach is the assumption that the variance and the mean of interspike intervals are related by a power function characterized by two parameters: the scale factor and exponent. It is shown that this single assumption allows the variability of spike ...
متن کامل